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An exponential-like responses analysis method is presented. The method enables one:  
1) to evaluate the similarity of a curve to the ideal exponential characteristic; 2) to find 
the most appropriate final value of a curve; and 3) to find the value of z giving the best 
approximation between the analyzed curve and the ideal exponential one. 

Various physical processes (mainly transient) are governed by the exponential 
law: 

A A t r a n s . ( t ) = [ 1 -  exp / t j ]AAf in .  (1) 

where: AAt  . . . . .  ( l )  

AAfin. 

is the transient value of  an increment of a magnitude A, chang- 
ing as a function of t; 
is the final value of  an increment of a magnitude A, usually 
caused by a step change of  a certain parameter influencing A; 
it means that AAfi , .  = A ( t  ~ oo) - A ( t  = O) = A A  t . . . . .  (t 

oo); 
is an independent variable whose function is A A  t ..... (usually 
time); 
is a parameter which exists in a function A A  t ..... (t) (usually a 
time constant). 

In a general case A may be any magnitude such as voltage, frequency, length, 
velocity, electrical resistance, and so on. Similarly, in a general case the indepen- 
dent variable t may have another meaning than time. An example of  a charac- 
teristic represented by Eq. (1) is given in Fig. 1. It should be noted that on the 
AAtrans. axis various above-mentioned magnitudes may appear (velocity, length, 
resistance, and so on) and the value of AAtrans. (and AAri,. ) may be expressed by 
any number. 

Let us transform Eq. (1) into another form, which is more convenient for ana- 
lytical purposes: 

A A t r a n s ' ( t ) = l - e x p  ( -  t ) .  (2) 
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A graphical illustration of this equation is presented in Fig. 2a. The diagram has 
a similar shape as the curve of  Fig. 1, but it is now normalized, that is, a magnitude 
represented on the y-axis is dimensionless and the curve always goes to a satura- 
tion level equal to 1. 

Processes described by Eqs (1) and (2) and illustrated in Fig. 1 and Fig. 2a are 
completely determined by AAfin. and z [2]. In a theoretical analysis the factor 
AAfi,. is usually defined from a function describing the dependence between a 

!~r" t - -  -- AAtrans.t Qr~j dimensions - -- 

t 

Fig. 1. Illustration of a typical transient process 

F1 Fz = - F 1 1 
1 1 - 7 - 1 - / ~  " -  . . . .  I - ~ - ~  
l i t /  , i ~ I ~ I /t'Atrons(t) 

/ ' / r T I  I ( 2 - ~  ~A,o 
t = - - a) a 1 -exp(tl 'r) 

t 
t 

F3=lg e F 2 ; F3=lglO F 2 

Fig. 2. Diagrams: a) of an exponential function F1; b) of its transformation defined by means 
of function F3 

magnitude A and this parameter, which causes its increment, and the parameter z 
is usually calculated from appropriate analytical expressions; for instance, in 
electrical circuits AAfin. is a function of  the change of  a current or of a voltage 
and z is a function of RLC values. Thus, in a theoretical analysis components of  
Eqs (1) and (2) are given by appropriate analytical formule and both (Fig. 1 and 
Fig. 2a) characteristics may be precisely calculated point by point. 

An opposite situation occurs in experimental research work. A characteristic 
is given and one has to determine its analytical parameters. In the simplest case 
one knows or assumes that an experimentally obtained curve has a perfect expo- 
nential form, and in Eqs (I) or (2)one wants to determine: 

a) the parameter z, assuming that an obtained AAfin. value is true; 
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b) the magnitude AAfi,., assuming that  the parameter  z is known. In particular,  
it may concern cases where an investigated process is very slow and there is a need 
to determine AAfin. on the basis o f  the initial par t  o f  the characteristic. 

In these two cases both parameter  "c and AA~in. may easily be calculated for 
any point  o f  a curve, using formulae which are derived directly f rom Eqs (1) or 
(2): Case a (AAji,. is known) :  

t i 0.4343 t i 

z = -  ,ogo[1 [ A'ra"s(ti)l ---- -- log,0[1 AAtrans (ti)]] 
- [  nAri,. J A ~  JJ 

Case b (z is known):  

(3) 

AAfin. --- AAt ..... (ti) (4) 1-oxp/- ) 
where t i is any arbitrarily chosen point  in the t-axis. Of  course, a c o m m o n  practice 
is to calculate several r or AArin. values for several t i points o f  the curve, and to 
take their average value as a finaI result. 

As has been mentioned above, the simplest case is when there are no doubts  
concerning either the exponential character o f  a curve, or one o f  the parameters  
which is actually given, e.g. AAron. or z. Usually there are some uncertainties about  
the character of  the curve itself, as well as about  the given parameter  AA.fi,. or z. 
These uncertainties results from various reasons, the most  c o m m o n  of  them being 
the following: 

- in experimental investigations it happens that one does not  know what  
analytical law governs an obtained characteristic, so one may not  be sure if the 
curve is really an exponential one, and this has to be checked; 

- even characteristics which should theoretically be exponential may have 
some deformations,  caused partially by the measurement system and partially 
by certain imperfections in the experimental conditions (for example in the thermal 
processes it may be grad T 4 : 0  or a thermal step having a fairly long time of  change 
between two temperatures);  

- in the case o f  fairly slow processes one does not have reliable information 
about  the correct final value AAfi n of  the curve, because an experiment has not  
proceeded for a long enough time or the sensitivity of  the measuring system is too 
low for small increments in the magnitude o f  A which take place in the final par t  
o f  an experiment (in such cases the AArin. value has to be determined by extra- 
polat ion and it is necessary to check if this value has been chosen correctly); 

- even when the parameter  r is given as a known value (for example calculated 
f rom an analytical expression) one should treat it critically because its magnitude,  
as a function o f  certain parameters (measured of  course with some error), may be 
determined only with a limited degree o f  accuracy. 
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372 BULIK: EXPONENTIAL-LIKE RESPONSES 

It is clear from the above remarks that a full analysis of a curve should enable 
one: 1) to evaluate the similarly of a curve to the ideal exponential characteristic; 
2) to find the most appropriate final value of a curve, AAfi~."; 3) to find the value 
of  giving the best approximation between the analyzed curve and the ideal expo- 
nential one. As will be shown below, the analysis method presented here meets 
these requirements to a considerable degree. 

The basic idea of the method is generally well known and has been used fairly 
widely to solve various problems. It consists in the analysis of certain experimental 
data by looking for some mathematical transformation which can be applied to 
the experimental data so that these data will result in a straight line if they fit 
a certain type of function. I f  one wants to apply such a procedure to Eq. (2), it 
appears that it is rather difficult to find a transformation which enables one to 
present function (2) as a straight line, or that transformations which may exist 
are very inconvenient for practical use. However, it appears that a convenient 
solution does exist, which consists not in analyzing a function of the form ex- 
pressed by Eq. (2), but in analyzing the difference between unity and this function: 

Case a (AAfin. is known): 

Case b (~ is known): 

F 2 = 1 A A t r a n s ' ( t )  
AAfin. (5) 

/ �9 (6, 

The above equations are obtained by a trivial transformation of Eq. (2). The rela- 
tions expressed by these two equations may also be observed directly in the typical 
diagrams illustrated in Fig. 2a where it is shown that the same curve may represent 
simultaneously function (2) (continuous ordinates) and function (5) or (6)* (dotted 
ordinates). 

Analysis of function (2) is now achieved by means of analysis of function (5) 
or (6)**. Its numerical values are expressed simply by the lengths of the dotted 
ordinates. Having values of the function (5) or (6) for individual values of the 
variable t, one calculates values of one of two functions: 

Case a (A.4fin. is known): 

A A t r a n s ( t ) ] ,  , 
F a =loge/ '2  =loge  1 ~ / "  F~ =lOgloF2 = 

.J 
(7; 7') 

= logl0LI1 - AAtrans'(t)AAfi~. 1- 

* d e p e n d i n g  o n  w h a t  is g iven:  d.4fln" or  ~. 
** d e p e n d i n g  o n  w h a t  is g iven:  dAftn, or  T. 
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Case b (z is known): 

[ t 
F4 = l o g e E 2 = l o g e  exp - �9 , 

~ - ' ~ 1 7 6 1 7 6 1 7 6  I - ~ i 1 - - - 0 " 4 3 4 3 t ' c  

(8; 8') 

for these individual values of the variable t. 
In case a (AAfi,. is known, �9 has to be determined) it is necessary now to draw 

an F3(t ) or F'(t) diagram (Fig. 2b). When the original characteristic has an expo- 

1 . . . . . . .  s - ~ ' - " - ~ - - ~ # "  - . . . . .  
a) t '/s ~' 

b l 
t ~, 

b) " ~ " ~  

Fig. 3. Deformations of exponential characteristics described by (a) the function F~ and (b) the 
corresponding changes in the function F~ 

nential character, this diagram is a straight line, or course. This is illustrated in 
Fig. 2b. If the original curve has some deformations, the function F3(t ) (or F~(t)) 
exhibits deviations from a straight line. Examples of typical deformations of  expo- 
nential-like characteristics and (corresponding to these) the forms of deformations 
of the diagrams of the functions F3(t ) (or F~(t)) are shown in Fig. 3 and Fig. 4. 

Figure 3 shows the situation when the experimentally obtained characteristics 
are more or less convex than the ideal exponential characteristic (Fig. 3a, short 
and long dotted curves, respectively). The corresponding shapes of the F3(t) (or 
F~(t)) function diagrams are presented in Fig. 3b. When the original characteristic 
(Fig. 3a) is more convex than the ideal exponential characteristic, the corresponding 
diagram of the function F3(t ) (or F~(t)) presents a certain concavity. This case is 
represented by short dotted curves in Fig. 3a and in Fig. 3b. An opposite case 
(the original response not convex enough) is illustrated by long dotted curves in 
Fig. 3a and in Fig. 3b. As shown in Fig. 3b, the diagram of the function F~(t) 
(or F~(t)) then presents a certain convexity. 

Figure 4 illustrates the case when the experimentally obtained characteristics 
have their final values different from I (especially in relation to their form in the 
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374 BULIK: EXPONENTIAL-LIKE RESPONSES 

initial and in the middle parts of the curves). In Fig. 4a a long dotted line repre- 
sents the situation when an original characteristic has its final value too small in 
comparison with an ideal exponential curve; a short dotted line shows the opposite 
case. The corresponding shapes of the diagrams of the function F3(t ) (or F~(t)) 
are presented in Fig. 4b. When an original curve has its final value smaller than 1 
(in comparison with an ideal exponential characteristic), the corresponding dia- 
gram of the function F3(t ) (or F~(t)) has its final part deviating down (long dotted 
curve in Fig. 4b). Alternatively, a final value greater than 1 causes an upward 
deviation of the function Fa(t) (or F~(t)) (short dotted curve in Fig. 4b). 

1 . . . . . . . . . . .  ~7~ ~-~2 . . . . . . . . .  

t 
t 

\ 
\ 

Fig. 4. (a) Exponential characteristics (determined theoretically by the function FI) having 
their final values different from unity and (b) the corresponding diagram of the function F 3 

When, after a certain averaging or correcting procedure, one has obtained a 
diagram of the function Fa(t) (or F~(t)) in the form of a straight line, one may 
very quickly and easily determine the value of r from this characteristic. 

Case a (AAfin. is known): As r is the reciprocal of the slope of the Fs(t) (or 
Fs(t)) diagram and as this line should begin at the origin, it is determined by the 
following formulae: 

ti - ti - 0.4343 6 
- -  ; 7 : - -  

l Z a t r a n s  ( t i )  I F~ 
F3 loge 1 AA~ ~ J 

- 0.4343 ti 

1Oglo [ 1 AAtAAn~ .(ti) ] 

(9; 9') 

Case b (7: is known): Solving Eqs (8) or (8') or using formula (4) directly, one 
obtains respectively: 
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BULIK: ExPONENTIAL-LIKE RESPONSES 375 

A A r i n . -  AAtrans'(t) - AAtrans'(ti) (10) 

, -  exp(E,) 1 - e x p [ ; ) }  

AAt~ans'(t) AAtrans'(ti) (10') 

1 - -  10 -~ ti- 
g 

where ti is any arbitrarily chosen point on the t-axis. 
The above method of analysis of  exponential-like responses has been found to 

be very useful in practice. Many responses for a thermal step function of electronic 
components and arrangements were analyzed in this way by the author [1] and 
the results obtained showed their correctness and usefulness in further experi- 
mental investigations and in mathematical analysis as well. The analysis is appli- 
cable of  course to any exponential-like curves, and not only to thermal responses. 
The practical procedure is illustrated in the example presented below. 

E x a m p l e  

As an example, use will be made of the thermal response given in the paper [3]. 
On page 95 of this paper, Fig. 4a shows an oscillogram which represents the 
experimentally obtained thermal response of the bridgewire (fine wire) of an 
apparatus. It results from the theoretical analysis presented in the paper that the 
response should have an exponential character. The response is copied in Fig. 5. 
It will be analyzed according to the procedure described above. The analysis and 
its successive steps are presented and explained in Table 1. 

Using the numbers obtained in the 5th row, one draws the F~(t) diagram, which 
is shown in Fig. 6. It is seen in Fig. 6 that the diagram obtained is a straight line 

5ms/diV 

Fig. 5. Osci ] ]ogram o f  the thermal  response o f  a bTidgewire 

t ~ms 
0 5 10 15 20 

Fig. 6. Diagram of the function F3(t ) for the response illustrated in Fig. 5 
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(accepting tolerable limits o f  a certain dispersion o f  the calculated points). This 
means that  the analyzed characteristic has an exponential character  and its final 
value has been read sufficiently correctly. The time constant  z o f  this curve is 
determined using Eq. (9): 

- 0.4343ti - 0.4343 t i - 0.4343.20 
r - - - 6.2 [ms]. 

F3 toglo [1 BAt . . . .  (/i) ] -- 1.35 

I f  the diagram in Fig. 6 is not  a straight line, it would be necessary to take into 
consideration either a slightly different final value o f  the curve (AArin.) or  slightly 
different values o f  the individual ordinates, depending on the deformations o f  the 
Fa(t ) (or F~(t)) diagram. When new values o f  AAfin. and AAt ..... are fixed, one 
has to repeat the set o f  calculations shown in Table 1 and to draw again the 
Fa(t ) (or F~(t)) diagram. It may happen o f  course that the modifications o f  AAfin. 
or AAtrans. necessary to obtain an Fa(t) (or F~(t)) diagram in the form o f  a straight 
line will be unacceptably great. Such a situation means that  the analyzed response 
is considerably different f rom the exponential one. 

Let us assume in turn that  only the initial par t  o f  the curve illustrated in Fig. 5 
is given (namely the par t  for the first 10 ms), that  the time constant  is known to 
be T = 6.2 ms (according to the calculations in Table 1), and that  AAfin. has to 
be determined. 

The practical procedure for determining AA~in. is presented in Table 2, where 
the successive steps o f  the analysis are also described. 

The average value o f  AAfi~. (calculated on the basis o f  the obtained 4 values) is 
AAfi . . . .  0,z, 3,4) = 5.4 mV. If  the first value is rejected (possible errors have the 
highest values at the beginning of  the response), the average valueis A A fin. a, (", 3, 4) = 
= 4.9 mV. The difference between the value read f rom the response and the 

calculated value is 8 ~ and 2 ~ ,  respectively, which seems to be an acceptable 
degree o f  accuracy. 

The author wishes to thank Mr. G. B. Hoadley of the IEEE for some remarks which enriched 
the fundamental idea in the manuscript. 
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RI~SUMi~ -- On pr6sente une mgthode d 'analyse des r6ponses exponentielles. La m6thode permet:  
l)  d '6valuer la similitude d 'une courbe ~t la caractgristique exponentielle id6ale, 2) de trouver 
la valeur finale la plus appropri6e d 'une courbe, 3) de trouver la va |eur  z qui donne la meil- 
leure approximation entre la courbe analys6e et l 'exponentielle id6ale. 

ZUSAMMENFASSUNG - -  Es wird eine Analysenmethode ftir exponentiell-/ihnliche Antworten 
beschrieben. Die Methode erm~Sglicht 1) die Ermit t lung der .~hnlichkeit einer Kurve mit dem 
[dealen exponentiellen Charakter,  2) Erforschung des geeigneten Endwertes einer Kurve und 
3) Auffindung des Wertes welcher die beste Approximat ion der analysierten Kurve zur idealen 
exponentiellen erm6glicht. 

Pe31oMe--Hpe~CTaB~eH MeTO~ 3KCHOHeH~Ha~bHO-HO~O6HOFO aHa~H3a OTK~HKa. MeTo~ HO- 
3BOnneT HpoBeCTH CXO~CTBO KpHBO~ K ~ea~bHO~ 3KCHOHeH~Ha~bHO~ xapaKTepncTHKe, B~6paTb 
Han6onee n o ~ x o ~ m e e  KOHetIHOe 3HaqeHHe KpHBo~ H Ha~TH 3Ha~eH~e T, ~a~omee Ha~ayKmee 
npa6nnxeBHeMem~y aBann3npoBaHHo~ KpHBO~ H nneanbnoa 3KCHOHeHTO~. 
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